Calculus - Early Transcendentals (ET)

Course Description:

This calculus course is at least a 3-credit course and consists of the algebraic, graphic, numeric, and modeling approach to the study of calculus, with or without technology, and with appropriate symbolic manipulation. The course includes the use of appropriate mathematical language, including symbolism, to define, evaluate, and analyze the characteristics of calculus concepts. It includes solving problems involving the techniques of calculus and applications of calculus. At least 70% of the course time must be spent on the essential topics. All essential topics must be addressed. The course must be at least a 3 -credit course. If the course is more than 3 -credit, then the essential topics comprise 70% of the threehour portion of the class. The remaining 1-2 credit hours may be used for optional topics as part of the co-requisite portion of the course.

Essential topics:

- Limits (including limits at infinity and one-sided limits)
- Statement of limit properties (such as limit of a constant, sum, product, or quotient)
- Continuity (including an intuitive understanding and continuity in terms of limits)
- Definitions of the derivative
- Relationship between differentiability and continuity
- Derivatives of elementary functions (including algebraic, logarithmic, exponential, trigonometric)
- Curve sketching (such as increasing and decreasing functions; relative and absolute maximum and minimum points; concavity; points of inflection; and corresponding characteristics of f, f^{\prime}, and $f^{\prime \prime}$)
- Applications of the derivative (such as slope of a curve at a point, optimization, related rates)
- Derivatives of sums, differences, products, and quotients
- Derivative of a composite function (chain rule)
- Implicit differentiation
- Derivative of the inverse of a function
- Higher order derivatives
- Differentials and Linear Approximation
- Mean Value Theorem
- Use of L'Hopital's Rule
- Concept of antiderivatives
- Basic integration formulas (for functions including algebraic, logarithmic, exponential, trigonometric)
- Application of antiderivatives (such as distance and velocity from acceleration, and growth and decay)
- Definition of a definite integral (limit of a sequence of Riemann sums)
- Approximations of the definite integral (using areas of rectangles)
- Properties of the definite integral
- The Fundamental Theorem of Calculus
- Applications of the definite integral
- Integration by substitution (using identities and change of variables)
**NOTE: A transferable calculus course can have as its main focus the study of algebraic functions (functions that can be built up by the usual algebraic operations of addition, subtraction, multiplication, division, and raising to constant powers). In addition, the study of transcendental functions (i.e trigonometric functions, inverse trigonometric functions, exponential functions, and logarithms) is expected. It is recommended that students in an ET Calculus I complete an ET Calculus II course.

Template for Course Inventory

Please fill out the following table and submit attachment(s). Approved courses must be resubmitted every 5 years.
Please attach the following materials:

- Current working syllabus and lab syllabus that contains instructional goals and/or objectives
- Comprehensive final; in the absence of a comprehensive final no more than 5 sample assessments.

Course \#				
Course Title				
Beginning Term (when is/was it first offered?)	If more than five years, check box \square			
	If less than five years, enter date:			
Credit Hours (including the entire course, lecture/lab)	Course:	Lab:		
Co-/Pre-requisite (test scores for placement)		Test	Score	
	Co-Requisite			
Successor Course:	Pre-Requisite			
Catalog Description				
All Textbook(s)/Lab Manual	ISBN: Title: Publisher: Author: Edition: Copyright Year:	ISBN: Title:		

Indicate the percentage of time spent on each topic. The sum of percentages must be 100%. To indicate where evidence of each topic is located in this submission, please check all boxes that apply.
S-Syllabus $\quad \mathrm{T}$ - Topics list $\quad \mathrm{C}$ - Catalog Description $\quad \mathrm{A}$ - Assessment $\quad \mathrm{O}$ other attachment

Essential Topics:	\% Time	S	T	C	A	0
1. Limits (including limits at infinity and one-sided limits)						
2. Statement of limit properties (such as limit of a constant, sum, product, or quotient)						
3. Continuity (including an intuitive understanding and continuity in terms of limits)						
4. Definitions of the derivative						
5. Relationship between differentiability and continuity						
6. Derivatives of elementary functions (including algebraic, logarithmic, exponential, trigonometric)						
7. Curve sketching (such as increasing and decreasing functions; relative and absolute maximum and minimum points; concavity; points of inflection; and corresponding characteristics of f, f^{\prime}, and $f^{\prime \prime}$)						
8. Applications of the derivative (such as slope of a curve at a point, optimization, related rates)						
9. Derivatives of sums, differences, products, and quotients						
10. Derivative of a composite function (chain rule)						
11. Implicit differentiation						
12. Derivative of the inverse of a function						
13. Higher order derivatives						
14. Differentials and Linear Approximation						
15. Mean Value Theorem						
16. Use of L'Hopital's Rule						
17. Concept of antiderivatives						
18. Basic integration formulas (for functions including algebraic, logarithmic, exponential, trigonometric)						
19. Application of antiderivatives (such as distance and velocity from acceleration, and growth and decay)						
20. Definition of a definite integral (limit of a sequence of Riemann sums)						
21. Approximations of the definite integral (using areas of rectangles)						
22. Properties of the definite integral						
23. The Fundamental Theorem of Calculus						
24. Applications of the definite integral						
25. Integration by substitution (using identities and change of variables)						
Percentage Sub-Total:						

Non-Essential Topics (may not be covered at all): 1. Other:		\% Time	S	T	C	A	0
	Percentage Grand Total:	0					
Additional Comments:							

Check if addressed:

\square Current working syllabus and lab syllabus that contains instructional goals and/or objectives
Comprehensive final; in the absence of a comprehensive final no more than 5 sample assessments
Every essential topic has been addressed
At least 70% of the course time must be spent on all the essential topics
Percentages of topics must total 100%
Course is at least 3-credit
Name of individual submitting: Date: \qquad
Email address: Phone: \qquad
Please contact Jodi Oliveto, Senior Policy and Program Officer, jodi.oliveto@wvhepc.edu with questions

