General Education Introductory Statistics

Course Description:

General Education Introductory Statistics is a course that stresses statistical literacy with conceptual understanding, relevance, and interpretation of key statistical processes. Correct use of vocabulary is imperative. Students should recognize the importance of data collection with proper sampling, experimental design, and identification of possible errors. At a minimum, a scientific calculator should be used to aid computation.

In the era of co-requisite mathematics courses and alternative pathways, a General Education Introductory Statistics course may be an appropriate mathematics course for some majors. A transferrable course should meet the guidelines set by the American Statistical Association (ASA) in the revised Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report (2016). ¹

At least 70% of the course time must be spent on the essential topics. All essential topics must be addressed. The course must be at least a 3-credit course. If the course is more than 3-credit, then the essential topics comprise 70% of the three-hour portion of the class. The remaining 1-2 credit hours may be used for optional topics as part of the corequisite portion of the course.

From GAISE Revised College Report (Page 3) 1

"The revised recommendations are:

- 1. Teach statistical thinking.
 - Teach statistics as an investigative process of problem-solving and decision-making.
 - Give students experience with multivariable thinking.
- 2. Focus on conceptual understanding.
- 3. Integrate real data with a context and purpose.
- 4. Foster active learning.
- 5. Use technology to explore concepts and analyze data.
- 6. Use assessments to improve and evaluate student learning."

From GAISE Revised College Report 2016 (Page 8) 1

"The desired result of all introductory statistics courses is to produce statistically educated students, which means that students should develop the ability to think statistically.

The following goals reflect major strands in the collective thinking expressed in the statistics education literature. They summarize what a student should know and understand at the conclusion of a first course in statistics. Achieving this knowledge will require learning some statistical techniques, but mastering specific techniques is not as important as understanding the statistical concepts and principles that underlie such techniques. Therefore, we are not recommending specific topical coverage.

- 1. Students should become critical consumers of statistically-based results reported in popular media, recognizing whether reported results reasonably follow from the study and analysis conducted.
- 2. Students should be able to recognize questions for which the investigative process in statistics would be useful and should be able to answer questions using the investigative process.
- 3. Students should be able to produce graphical displays and numerical summaries and interpret what graphs do and do not reveal.
- 4. Students should recognize and be able to explain the central role of variability in the field of statistics.
- 5. Students should recognize and be able to explain the central role of randomness in designing studies and drawing conclusions.
- 6. Students should gain experience with how statistical models, including multivariable models, are used.
- 7. Students should demonstrate an understanding of, and ability to use, basic ideas of statistical inference, both hypothesis tests and interval estimation, in a variety of settings.
- 8. Students should be able to interpret and draw conclusions from standard output from statistical software packages.
- 9. Students should demonstrate an awareness of ethical issues associated with sound statistical practice."

¹ Citation: GAISE College Report ASA Revision Committee, "Guidelines for Assessment and Instruction in Statistics Education College Report 2016," http://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf

Essential topics:

- Introduction to statistical terms and statistical thinking including: understanding the definitions of population, sample, parameter, and statistic; distinguishing between inferential and descriptive statistics
- Types of data; collecting sample data
- Frequency distributions; organizing data
- Graphs that enlighten and graphs that deceive; bar graphs vs. histograms; qualitative graphs vs. quantitative graphs
- Measures of center to include: mean, median, and mode
- Measures of variation; measures of relative standing and boxplots to include: relevance of variance and standard deviation, interquartile range, outliers, range, boxplots with fences, percentiles, and z-scores
- Basic concepts of probability to include: sample space, theoretical vs. empirical probability, disjoint vs. independent events, and the fundamental counting principle
- Probability rules, to include: addition, multiplication and conditional
- Discrete probability distributions to include: random variables and expected value
- Defining normal distribution and relating probability to area under the curve with applications, to include: normal distributions with any mean and standard deviation and the Empirical Rule
- Investigating the significance of the Central Limit Theorem as it applies to sample means and proportions; calculating the confidence interval for population proportion and population mean, σ known
- Basics of hypothesis testing, to include: assumptions for testing, applying steps in hypothesis testing with emphasis on interpreting results, differentiating between Type I and Type II errors, defining and applying a level of significance (to include p-value and critical regions), and the relevance of sample size
- Testing a claim for population proportion
- Testing a claim for a population mean, σ known
- Correlation and regression, including: scatterplots, interpreting r, correlation does not equate to causation, interpreting the slope of a regression line, making predication using a regression line, and extrapolation

Optional Topics

- Frequency polygons
- Stem and leaf plots
- Circle graphs (pie charts)
- Dot plots
- Time series graphs
- Midrange
- Binomial distributions
- Sampling distributions
- Uniform distributions
- t-distribution
- Chi-Square distributions

- Combinations
- Permutations
- Estimating population standard deviation
- Determining the equation of a line of regression
- Hypothesis testing for the mean when the standard deviation is unknown
- Making inferences for correlations
- Calculating residuals
- Other

Template for Course Inventory

Please fill out the following table and submit attachment(s). Approved courses must be resubmitted every 5 years.

Please attach the following materials:

• Current working syllabus and lab syllabus that contains instructional goals and/or objectives

• Comprehensive final; in the absence of a comprehensive final no more than 5 sample assessments

	the absence of a comprehensive infair no more than 3			
Course #				
Course Title				
Beginning Term (when	If more than five years, check box \square			
is/was it first offered?)	If less than five years, enter date:			
Credit Hours (including the entire course, lecture/lab)	Course:			
Co-/Pre-requisite (test		Test	Score	
scores for placement)	C. D. S. M.			
	Co-Requisite			
	Pre-Requisite			
Successor Course:	sor Course:			
Catalog Description				
All Textbook(s)/Lab Manual	ISBN:	ISBN:		
	Title:	Title:		
	Publisher:	Publisher:		
	Author:	Author:		
	Edition:	Edition:		
	Copyright Year:	Copyright Year:		

Indicate the percent time spent on each learning topic (should add up to 100%). To indicate where evidence of each learning topic is located in this submission, please check all boxes that apply.

	S – Syllabus	T – Topics list	C – Catalog Description	A – Assessment	O – othe	r att	achi	ment		
Essential Topics:					% Time	S	Т	С	Α	0
1.	Introduction to statisti	ical terms and statistical	thinking including: understanding	the definitions of						
	population, sample, pa	arameter, and statistic; o	listinguishing between inferential	and descriptive statistics						
2.	Types of data; collecting	ng sample data								
3.	Frequency distribution	ns; organizing data								
4.	Graphs that enlighte	n and graphs that dec	eive; bar graphs vs. histograms	; qualitative graphs vs.						
	quantitative graphs									
5.	Measures of center to	include: mean, median,	and mode							
			anding and boxplots to include: re	levance of variance and						
	standard deviation, int	terquartile range, outlier	rs, range, boxplots with fences, pe	rcentiles, and z-scores						
7.			e space, theoretical vs. empirical p							
	independent events, a	nd the fundamental cou	nting principle							
8.	Probability rules, to in-	clude: addition, multiplic	cation and conditional							
9.	Discrete probability di	stributions to include: ra	indom variables and expected valu	ie						
10.	Defining normal distrib	oution and relating prob	ability to area under the curve wit	th applications, to include:						
	normal distributions w	vith any mean and stand	ard deviation and the Empirical Ru	ule						
11.	Investigating the signif	ficance of the Central Lin	nit Theorem as it applies to sampl	e means and proportions;						
	calculating the confide	ence interval for populat	ion proportion and population me	ean, σ known						
12.	Basics of hypothesis te	esting, to include: assum	ptions for testing, applying steps i	n hypothesis testing with						
	emphasis on interpret	ing results, differentiatir	ng between Type I and Type II erro	ors, defining and applying						
	a level of significance (to include p-value and c	ritical regions), and the relevance	of sample size						
13.	Testing a claim for pop	oulation proportion								
14.	Testing a claim for a po	opulation mean, σ know	n							
15.	Correlation and regres	sion, including: scatterp	lots, interpreting r, correlation do	es not equate to						
	causation, interpreting	g the slope of a regression	on line, making predication using a	regression line, and						l
	extrapolation									
				Percentage Total:						

Non-Essential Topics (may not be addressed at all):	% Time	S	Т	С	Α	0
1. Frequency polygons						
2. Stem and leaf plots						
3. Circle graphs (pie charts)						
4. Dot plots						
5. Time – series graphs						
6. Midrange						
7. Binomial distributions						
8. Sampling distributions						
9. Uniform distributions						
10. t-distributions						
11. Chi-Square distributions						
12. Combinations						
13. Permutations						
14. Estimating population standard deviation						
15. Determining the equation of a line of regression						
16. Hypothesis testing for the mean when the standard deviation is unknown						
17. Making inferences for correlations						
18. Calculating residuals						
19. Other:						
Percentage Sub-Total:						
Percentage Grand Total:						
Additional Comments:						

Check if addressed:

Current working syllabus and lab syllabus that contains instructional goals and/or objectives
Comprehensive final; in the absence of a comprehensive final no more than 5 sample assessments
Every essential topic has been addressed
At least 70% of the course time must be spent on all the essential topics
Percentages of topics must total 100%
Course is at least 3-credit

Name of individual submitting:	_Date:
Email address:	_Phone:

Please contact Jodi Oliveto, Senior Policy and Program Officer, jodi.oliveto@wvhepc.edu with questions